403 research outputs found

    Cortical Activation Patterns in Art Making vs. Fine Motor Movement as Measured by EEG

    Get PDF
    This quantitative study explores the differences in cortical activation patterns when subjects create art versus when they engage in a rote motor task. It is hypothesized that a statistically significant difference occurs in cortical activity patterns during art making compared with non- creative rote motor behavior and that such differences can be detected and quantified with the electroencephalogram (EEG.) Ten consenting study subjects (one with formal art training, three with some art experience, and six with no art experience) underwent EEG recording at baseline (multiple measures) and with art making, and also with rote motor tasking. Baseline control recordings showed minimal changes in EEG while art making was associated with a persistent change from baseline of significant direction and amplitude involving both hemispheres, a change that was similar to the persistent change in EEG following rote motor tasks. These preliminary findings suggest that EEG may be a meaningful biomarker for cortical activation in the study of creative arts and points to further exploration using Mobile Brain Body Imaging (MoBI) in experimental designs. This system provides a reproducible, measurable, and quantitative methodology for evaluating brain activity and function in the study of the neuroscientific basis of creative arts, neuroaesthetics, and art therapy

    Dynamic Hardware Reconfiguration For Fast Test and Validation

    Get PDF
    The design and manufacturing of products such as laptops, tablets, etc. often starts with a design firm producing a reference design that is subsequently modified by different manufacturers prior to shipping the product under their own labels. Testing the reference design is no guarantee that a shipped-out design is reliable due to the possibility of substantial differences between the reference design and the shipped-out design. This disclosure describes a single embedded device, a reconfigurable reference board with many different components connected to it, that can be used to configure different (shipped-out) platforms. The reference board enables rapid validation of a large number of variations of a given reference design, including the rapid test and integration of newly introduced components. The time-to-market, lab-space, investment in test-and-measurement equipment, engineering resources, etc. required for test and validation are thus substantially reduced

    Automatic wireless activation in the presence of saved networks

    Get PDF
    Mobile devices such as smartphones, tablets, laptop computers, wearables, head mounted displays, etc. have the capability to access a wireless local area network as well as a cellular data network. Users often turn off the wireless local network access capability, e.g., by turning Wi-Fi off. Turning off such Wi-Fi capability has benefits such as avoiding automatic connections to slow, unreliable or potentially malicious networks, conserving battery, etc. In some instances, users do not remember to turn Wi-Fi back on, which leads to the device utilizing the cellular data network and potentially higher bills, because of charges for cellular data usage. This disclosure describes techniques that help prevent unintentional overuse of cellular data by automatically re-enabling Wi-Fi in the presence of saved networks

    Probing ultrafast dynamics of solid-density plasma generated by high-contrast intense laser pulses

    Get PDF
    We present ultrafast dynamics of solid-density plasma created by high-contrast (picosecond contrast ∼10-9), high-intensity (∼4 × 1018 W/cm2) laser pulses using time-resolved pump-probe Doppler spectrometry. Experiments show a rapid rise in blue-shift at early time delay (2-4.3 ps) followed by a rapid fall (4.3-8.3 ps) and then a slow rise in blue-shift at later time delays (>8.3 ps). Simulations show that the early-time observations, specifically the absence of any red-shifting of the reflected probe, can only be reproduced if the front surface is unperturbed by the laser pre-pulse at the moment that the high intensity pulse arrives. A flexible diagnostic which is capable of diagnosing the presence of low-levels of pre-plasma formation would be useful for potential applications in laser-produced proton and ion production, such as cancer therapy and security imaging

    Generation of a strong reverse shock wave in the interaction of a high-contrast high-intensity femtosecond laser pulse with a silicon target

    Get PDF
    We present ultrafast pump-probe reflectivity and Doppler spectrometry of a silicon target at relativistic laser intensity. We observe an unexpected rise in reflectivity to a peak approximately9 ps after the main pulse interaction with the target. This occurs after the reflectivity has fallen off from the initially high “plasma-mirror” phase. Simultaneously measured time-dependent Doppler shift data show an increase in the blue shift at the same time. Numerical simulations show that the aforementioned trends in the experimental measurements correspond to a strong shock wave propagating back toward the laser. The relativistic laser-plasma interaction indirectly heats the cool-dense (ne 10^23 cm^-3 and Te ~10eV) target material adjacent to the corona, by hot electron induced return current heating, raising its temperature to around 150eV and causing it to explode violently. The increase in reflectivity is caused by the transient steepening of the plasma density gradient at the probe critical surface due to this explosive behavior

    Portal technologies for patient-centred integrated care

    Get PDF
    Integrated care pathways (ICP) are increasingly used in clinical settings to provide more effective care to patients. ICPs form part of local working agreements to assist co-ordination of multi-disciplinary teams to deliver evidence-based care plans to individual patients. They also document the expected progress of specific patient groups as part of clinical records. To anticipate increased use of ICPs, we have developed Healthcare@Home, a research-phase demonstrator for improving integration of information along the patient path. Healthcare@Home includes support for at-home, in-clinic and mobile wireless sensor devices feeding patient-proximal data hubs, timeline-based physiological trend analysis, data aggregation/dashboarding and individualised risk stratification. These and other decision support tools are embedded in portal designs supporting 'end-to-end' workflows as focused by the composite needs of a National Service Framework (NSF) for patients with diabetes. Healthcare@Home thus represents a scaleable, extensible personalised healthcare information system driven directly from national policy on disease early detection and prevention. Individual portlets have been mapped to stages in the ICP. The portal technologies employed, running on PCs, mobile phones or TVs are capable of highly cost-effective 'end-to-end, anywhere-to-anywhere' information integration

    CD4\u3csup\u3e+\u3c/sup\u3e T cells in the lungs of acute sarcoidosis patients recognize an Aspergillus nidulans epitope

    Get PDF
    Löfgren’s syndrome (LS) is an acute form of sarcoidosis characterized by a genetic association with HLA-DRB1*03 (HLA-DR3) and an accumulation of CD4+ T cells of unknown specificity in the bronchoalveolar lavage (BAL). Here, we screened related LS-specific TCRs for antigen specificity and identified a peptide derived from NAD-dependent histone deacetylase hst4 (NDPD) of Aspergillus nidulans that stimulated these CD4+ T cells in an HLA-DR3–restricted manner. Using ELISPOT analysis, a greater number of IFN-γ– and IL-2–secreting T cells in the BAL of DR3+ LS subjects compared with DR3+ control subjects was observed in response to the NDPD peptide. Finally, increased IgG antibody responses to A. nidulans NDPD were detected in the serum of DR3+ LS subjects. Thus, our findings identify a ligand for CD4+ T cells derived from the lungs of LS patients and suggest a role of A. nidulans in the etiology of LS

    Beryllium-specific CD4+ T cells induced by chemokine neoantigens perpetuate inflammation

    Get PDF
    Discovering dominant epitopes for T cells, particularly CD4+ T cells, in human immune-mediated diseases remains a significant challenge. Here, we used bronchoalveolar lavage (BAL) cells from HLA-DP2-expressing patients with chronic beryllium disease (CBD), a debilitating granulomatous lung disorder characterized by accumulations of beryllium (Be)-specific CD4+ T cells in the lung. We discovered lung resident CD4+ T cells that expressed a disease-specific public CDR3β T cell receptor motif and were specific to Be-modified self-peptides derived from C-C motif ligands 4 (CCL4) and 3 (CCL3). HLA-DP2-CCL/Be tetramer staining confirmed that these chemokine-derived peptides represented major antigenic targets in CBD. Furthermore, Be induced CCL3 and 4 secretion in the lungs of mice and humans. In a murine model of CBD, the addition of LPS to Be oxide exposure enhanced CCL4 and CCL3 secretion in the lung and significantly increased the number and percentage of CD4+ T cells specific for the HLA-DP2-CCL/Be epitope. Thus, we demonstrate a direct link between Be-induced innate production of chemokines and the development of a robust adaptive immune response to those same chemokines presented as Be-modified self-peptides, creating a vicious cycle of innate and adaptive immune activation

    Beryllium-specific CD4\u3csup\u3e+\u3c/sup\u3e T cells induced by chemokine neoantigens perpetuate inflammation

    Get PDF
    Discovering dominant epitopes for T cells, particularly CD4+ T cells, in human immune-mediated diseases remains a significant challenge. Here, we used bronchoalveolar lavage (BAL) cells from HLA-DP2–expressing patients with chronic beryllium disease (CBD), a debilitating granulomatous lung disorder characterized by accumulations of beryllium-specific (Be-specific) CD4+ T cells in the lung. We discovered lung-resident CD4+ T cells that expressed a disease-specific public CDR3β T cell receptor motif and were specific to Be-modified self-peptides derived from C-C motif ligand 4 (CCL4) and CCL3. HLADP2–CCL/Be tetramer staining confirmed that these chemokine-derived peptides represented major antigenic targets in CBD. Furthermore, Be induced CCL3 and CCL4 secretion in the lungs of mice and humans. In a murine model of CBD, the addition of LPS to Be oxide exposure enhanced CCL4 and CCL3 secretion in the lung and significantly increased the number and percentage of CD4+ T cells specific for the HLA-DP2–CCL/Be epitope. Thus, we demonstrate a direct link between Be-induced innate production of chemokines and the development of a robust adaptive immune response to those same chemokines presented as Be-modified self-peptides, creating a cycle of innate and adaptive immune activation

    Global, regional, and national burden of chronic kidney disease, 1990–2017 : a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background Health system planning requires careful assessment of chronic kidney disease (CKD) epidemiology, but data for morbidity and mortality of this disease are scarce or non-existent in many countries. We estimated the global, regional, and national burden of CKD, as well as the burden of cardiovascular disease and gout attributable to impaired kidney function, for the Global Burden of Diseases, Injuries, and Risk Factors Study 2017. We use the term CKD to refer to the morbidity and mortality that can be directly attributed to all stages of CKD, and we use the term impaired kidney function to refer to the additional risk of CKD from cardiovascular disease and gout. Methods The main data sources we used were published literature, vital registration systems, end-stage kidney disease registries, and household surveys. Estimates of CKD burden were produced using a Cause of Death Ensemble model and a Bayesian meta-regression analytical tool, and included incidence, prevalence, years lived with disability, mortality, years of life lost, and disability-adjusted life-years (DALYs). A comparative risk assessment approach was used to estimate the proportion of cardiovascular diseases and gout burden attributable to impaired kidney function. Findings Globally, in 2017, 1·2 million (95% uncertainty interval [UI] 1·2 to 1·3) people died from CKD. The global all-age mortality rate from CKD increased 41·5% (95% UI 35·2 to 46·5) between 1990 and 2017, although there was no significant change in the age-standardised mortality rate (2·8%, −1·5 to 6·3). In 2017, 697·5 million (95% UI 649·2 to 752·0) cases of all-stage CKD were recorded, for a global prevalence of 9·1% (8·5 to 9·8). The global all-age prevalence of CKD increased 29·3% (95% UI 26·4 to 32·6) since 1990, whereas the age-standardised prevalence remained stable (1·2%, −1·1 to 3·5). CKD resulted in 35·8 million (95% UI 33·7 to 38·0) DALYs in 2017, with diabetic nephropathy accounting for almost a third of DALYs. Most of the burden of CKD was concentrated in the three lowest quintiles of Socio-demographic Index (SDI). In several regions, particularly Oceania, sub-Saharan Africa, and Latin America, the burden of CKD was much higher than expected for the level of development, whereas the disease burden in western, eastern, and central sub-Saharan Africa, east Asia, south Asia, central and eastern Europe, Australasia, and western Europe was lower than expected. 1·4 million (95% UI 1·2 to 1·6) cardiovascular disease-related deaths and 25·3 million (22·2 to 28·9) cardiovascular disease DALYs were attributable to impaired kidney function. Interpretation Kidney disease has a major effect on global health, both as a direct cause of global morbidity and mortality and as an important risk factor for cardiovascular disease. CKD is largely preventable and treatable and deserves greater attention in global health policy decision making, particularly in locations with low and middle SDI
    corecore